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Abstract

This Final Technical Report summarizes the salient accomplishments under this grant
which, though awarded for the period April 1, 2010 to Mar 31, 2015, fell victim to the federal
government mandated Sequestration order that went into effect on March 28, 2013 and thus no
funds were made available after March 31, 2013. In spite of such a setback, the following
significant goal was reached: highly lattice mismatched (~3.5%) GaAs/In0.5Ga0.5As flat-top
quantum dot on <30nm mesa tops were realized with spectral emission uniformity an order of
magnitude better than the typical lattice-mismatch strain-driven 3D island quantum dots dubbed
self-assembled QDs. This makes the nanotemplate-directed QD arrays well suited as single
photon emitter arrays much sought for quantum cryptography and information processing.
Regrettably, the sudden discontinuation of the grant did not allow pursuing exploration of this
potential.
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I. Objectives:

The overall objectives of this program were to examine the fundamental aspects of the
accommodation of the difference between lattice constant, chemical bonding, and crystal
structure of an overlayer deposited epitaxially on structurally patterned substrate as a function of
the patterned mesa lateral size, depth, and shape. The aim is realizing, via purely growth control,
spatially ordered arrays of defect-free and spectrally uniform high optical quality semiconductor
quantum nanostructures made of highly dissimilar materials as required by systems for advanced
applications in the infrared and optical regimes. The approach to synthesizing, in-situ,
nanostructure arrays via patterned nanotemplate-directed size-reducing epitaxy that underpins
this program was pioneered by the PI and an illustrative example for the case of lattice matched
combination GaAs/AlGaAs is shown in Fig.1.

To explore the expected benefits of this approach to integrating highly dissimilar
semiconductor materials, the research program was organized into the following synergistic aims
and parallel tasks:

Specific Aims Planned & Pursued:

1. Develop methodologies and protocols for fabricating nanotemplate arrays with lateral sizes
<50nm and depths between 50nm and 500nm.

2. In-situ atomic-scale examination of the evolution of growth of highly inhomogeneous
overlayers on such nanotemplates using a custom-designed UHV STM system.

3. Develop methodologies and protocols for synthesizing 3-dimensionally confined quantum
nanostructures (quantum dots) via atomic-layer control on growth of buffer layers and of highly
lattice-mismatched overlayers on the nanotemplate mesas utilizing molecular beam epitaxy.

4. Characterize such grown quantum dots (QDs) structurally via HRTEM.

5. Characterize these nanotemplate QD arrays optically via broad area and micro-
photoluminescence (μPL) with a focus on spectral response uniformity.

6. Developing appropriate instrumentation for and examining the single photon emission
characteristics of such nanotemplate-based on-site single QDs accessible in a regular array.

The material system chosen as a vehicle for exploring these ideas and approaches was the
InGaAs/AlGaAs combination that provides up to 7% lattice mismatch (for InAs/GaAs) on GaAs

Fig.1 Shows a SEM image of pyramidal
structures synthesized via engineered
surface stress-directed size-reducing
growth on an array of square nanoscale
mesas on GaAs(001) substrate. Inset
shows a TEM image of the apex region of
the pyramid comprising GaAs (dark)
/AlGaAs (light) based quantum dots.
[From K. C. Rajkumar et al. Jour.Vac.
Sc.Tech. B12, 1071 (1994)]
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substrates and 11% on Si substrates (InAs/Si) for which the chemical bonding inhomogeneity
involves the challenge of integrating heteropolar-homopolar material combination.

II. Summary of Major Accomplishments

(1) Nanotemplate Array Fabrication

We fabricated, for the first-time, pristine high-aspect ratio (6:1) GaAs nanotemplate
arrays comprising as-etched nanopillars having (100) top and nearly vertical {100} side walls.
On such nanopillars was carried out molecular beam epitaxial growth of (a) the lattice-matched
GaAs/AlGaAs quantum structures and (b) the highly heterogeneous GaAs/InGaAs system with
lattice mismatch up to 7% for GaAs/InAs to realize single quantum dots with flat top
morphology on the in-situ size-reduced nanopillar tops having lateral sizes in the range of 10nm
to 50nm. The covered range of deposited composition and thickness provided nanotemplate
quantum dots that emit between 900nm and1200nm, covering the near infrared regime of
interest. (Details in Sec.III)

(2) Transmission electron microscopy utilizing both chemical and phase contrast for,
respectively, imaging layer contrast (such as GaAs against AlGaAs or InGaAs) and resolving
lattice planes was used to characterize the grown nanotemplate-directed quantum nanostructures
including quantum dots. These studies were carried out using our unique approach to cross-
sectional TEM imaging of nanotemplate-based nanostructures that does not require TEM
specimen thinning.

The samples were first examined at the TEM facility at USC and then those worthy of
being examined with a microscope with nearly-atomic level resolution, such as at AFRL
WPAFB, were sent to WPAFB for collaborative investigations with Dr. K. Mahalingam and Dr.
Gail Brown. Such studies were underway when the Sequestration triggered cut forced them to be
stopped.

(3) Micro Photoluminescence (μPL) studies of nanotemplate quantum dot (NTQD) spectral
response and uniformity of the array:

As the nanotemplate-directed single or multiply stacked quantum nanostructures created
via growth on spatially regular arrays of nanotemplates can offer significant improvement in
spectral emission uniformity over the common place implementations based upon spatially
randomly located lattice mismatch strain-driven 3D island self-assembled quantum dots
(SAQDs) that exhibit large composition, size, and shape variation as manifest in their spectral
emission nonuniformity (PL linewidths >50meV of the SAQD ensemble are common place),
establishing an appropriate μ-PL measurement system to measure PL from individual NTQDs
and thus assess the realized advantage in reducing spectral nonuniformity took high priority.
Having established such an experimental station early in the program, measurements of
statistically significant number of nanotemplate quantum dots established that we achieved
control of QD spatial position to ~10nm (versus >100nm for SAQDs) and the PL peak position
variation ~2-4meV (versus typically >50meV for SAQDs), an order of magnitude improvement.
The low (liquid Helium) temperature μ-PL measurements revealed NTQD emission lines with
linewidths of ~300 μeV limited by the instrumental resolution. (Details in Sec. III)

(4) Exciton Decay Dynamics:
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To examine the dynamics of exciton decay in single nanotemplate quantum dots we set
up and tested the necessary low-temperature time-resolved micro-photoluminescence (TR-μPL)
system capable of characterizing the emission from single nanotemplate quantum dots down to
liquid helium temperature. This served as the precursor for setting up the instrumentation for
examining the photon emission statistics to ascertain the potential of single NTQDs as single
photon emitters with highly improved spectral characteristics so critically needed for quantum
information processing studies.

(5) Single Photon Emission Characteristics:
In Fall 2012 we extended the TRPL system to the Hanbury-Brown and Twiss setup for

measurement of single photon emission statistics. In Spring 2013 we were in the midst of further
refinements in the optical system to acquire in reasonable time the signal-to-noise ratio needed to
measure, for the first time, single photon emission characteristics from a nanotemplate-based
flat-top single quantum dot when, most regrettably, the Sequestration cut hit and the lack of
funds prevented any further work.

(6) Atomic-Scale Structure Evolution

An important element of understanding and controlling the growth of quantum
nanostructures comprising highly heterogeneous material combinations is the examination of
structural evolution and accompanying electronic state information for nanomesas (both top and
sidewall) as a function of sub-monolayer incremental depositions  of  the  chosen overlayer.
Towards this goal we undertook and finalized the design, got made, and tested a UHV STM
system with the unique feature of tip re-positioning after sample dismounting/remounting to an
accuracy of less than a micron. The testing revealed that the system satisfied the designed
dismounting/remounting tip repositioning accuracy as illustrated in Fig.2 below by the black
arrow in the images of a mica sample taken with demounting and remounting the sample.

The atomic resolution however was limited to restrictive conditions indicating the need
for the vendor to make further design adjustments. This was underway when the Sequestration
cut hit, preventing any further work on developing this unique instrument.

III. Some Details of the Growth and Optical Behavior of Nanotemplate Single QDs:

III.1 Fabrication of Nanotemplate Arrays:
The in-situ realization of a designed array of nanomesas with surface linear dimensions

<50nm on which quantum dots, single or vertically stacked, are subsequently synthesized via
purely growth control, is a two-step process: first is the fabrication of the as-patterned and

Fig.2 Shows STM images of the
same area of a mica sample with
sample demounting and remounting
between the left and right images.
The arrow marks the tip return to the
same position with an accuracy better
than one micron.
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etched arrays of GaAs nanomesas of surface linear dimensions 50nm to 500nm and varying
sidewall angles using electron beam lithography and chemical etching; second is the size-
reducing growth of GaAs buffer layer to overcome residual contamination and defects induced
by the etching process while reducing the nanomesa size to the desired range of <50nm for the
subsequent synthesis of the quantum dots of highly heterogeneous materials.

The as-patterned mesa array area on the substrate was designed to contain mesas of
sixteen different sizes in the patterned region for structural and optical studies and an L-shaped
unpatterned region is used to allow in-situ growth condition monitoring and control using
RHEED (reflection high energy electron diffraction) pattern and intensity dynamics to monitor
the surface and growth front conditions. All nanomesas in the patterned region are created with
their four edges along the [100] direction to enable symmetric adatom migration from the four
side walls to the mesa top. Nanomesas of size 50nm to 500nm with near-vertical sidewall angles
are created by wet chemical etching using 4:1:20 NH4OH:H2O2:H2O after patterning. Figure 3(a)
shows an SEM image of an as-etched mesa array with 5μm pitch and size 324nm and Fig. 3(b)
shows a 45˚ tilted SEM image of an individual mesa in that array.

Fig.3. (a) Top view SEM image of mesa array with 5μm pitch and of size 324nm. (b) 45˚ tilted
view SEM image of one mesa out of the array. Nanomesas have near vertical side wall after wet
chemical etching.

Such as-etched substrates were mounted on Mo blocks and degassed in the modutrac of
the Riber 3200 MBE system and then transferred to the growth chamber for thermal deoxidation.
Subsequently a GaAs buffer layer with a few monolayer (ML) thick AlGaAs marker layers (for
post-growth TEM examination) interspersed periodically was grown at T=600˚C, PAs=2.5E-6
Torr, and Ga delivery time of τGa=4sec/ML (growth rate of 0.25ML/sec) to (1) recover from any
residual damage remaining after deoxidation and (2) control the mesa top size reduction to bring
it to the desired size < 30nm for the growth of single flat-top NTQD on the mesa top.

III.2 Growth of Nanotemplate Quantum Dots (NTQDs)

The InGaAs flat morphology NTQDs were grown at τIn=4sec/ML and at temperature
depending on the In composition (T=520˚C for In0.5Ga0.5As QD, T=480˚C for InAs QD, the two
types of samples used for optical studies). The InGaAs QDs were capped by 200ML GaAs to
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create three dimensional confinement and to protect the QDs from impurities and defects on the
GaAs surface.

We note that there are two stages of mesa top pinch-off with increasing deposition amount
for (001) top face nanomeasas with edges along [100] as we demonstrated earlier [see A. Konkar
et al., Jour. Cryst. Growth 150, 311 (1995)]. In the first stage {103} type planes dominate mesa
top size reduction and lead to the first mesa pinch off by {103} planes. Subsequent deposition
and atom migration leads to the change from {103} planes to {101} planes while opening up a
new top (001) surface. This newly opened mesa top size first grows bigger then reduces till it
reaches the second mesa pinch off controlled by the {101} planes. Figure 4 shows SEM images
of mesas at various stages: (a) {103} plane dominated (001) mesa top surface reduction; (b) the
first mesa pinch off by {103} planes; (c) {101} plane dominated newly opened (001) mesa top
surface reduction. Thus, using this growth mechanism, two types of flat QDs can be grown: (1)
QD bounded by {103} planes and (2) QD bounded by {101} planes as shown in Fig.5 (d)
marked in red.

Fig.4 Growth Evolution on Nanomesas. (a) top view SEM image of mesa with  (001) mesa top
surface bounded by {103} plane (b) top view SEM image of mesa at the first stage of mesa
pinch-off bounded by {103} plane and (c) top view SEM image of mesa with newly opened
(001) mesa top surface bounded by {101} plane after the first mesa pinch off by{103} plane.(d)
schematic drawing of the growth evolution and geometry of two kinds of QD obtainable from
nanotemplate-directed growth.
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Illustrative optical results on two classes of samples, one with 12ML flat InAs QD on mesa
top bounded by {101} planes and the other with 4.25ML flat In0.5Ga0.5As QD on mesa top
bounded by {103} planes having emission at different wavelengths are discussed next .

III.3 Optical Properties of Nanotemple-Directed Flat Top QDs
To carry out optical measurements on individual nanotemplate quantum dots, a home-

built micro-PL setup was established and tested. A 40× NA 0.65 objective lens is used to focus
excitation light down to 2 μm diameter to study the optical response of individual mesas in
samples mounted in a LHe cooled cryostat. A Ti:S laser in the cw mode tuned to 780nm was
used for excitation for time integrated PL studies. The same system in a 76MHz fs pulsed mode
was used in time resolved PL (TRPL) studies of the exciton decay behavior. Signal collection
was through the same objective lens as used for focusing light and excitation. The PL from the
sample was filtered from the excitation beam by a long pass filter and collected by a multimode
optical fiber patch cord directed to a 300mm focal length spectrometer with an exit port
connected to an InGaAs array detector for time integrated PL measurements. The spectral
resolution of the setup is ~300μeV using the combination of a 1200 g/mm grating and ~100 μm
entrance slit width that enables reasonable signal level. The instrument response function (IRF)
of the time resolved measurement has a width of ~ 700ps, limited by the time jitter of the APDs.

Time integrated PL spectra at 77.4K and 8K were collected from the two samples, one
with 12ML flat InAs QD on mesa top bounded by {101} planes and the other with 4.25ML flat
In0.5Ga0.5As QD on mesa top bounded by {103} planes as noted in Sec.II. The PL spectra at
these two temperatures from the 12ML flat InAs QD with a base length of ~15nm and height
~5nm as estimated from growth evolution are shown in Fig.5. At 77K emission at 1122.5nm
with a linewidth of 4.9meV is seen. Power dependent studies show that the PL intensity saturates
at very low power of 4μW (~ 130 W/cm2) indicating the 3-dimensionally confined nature of the
electron states involved. The QD PL linewidth is broadened by thermal energy, KBT ~ 6.6meV,
i.e. phonons which prevents revealing the true linewidth and hence the radiative-decay limited
coherence lifetime of QD. Significantly reducing thermal energy to KBT ~ 700 μeV by cooling
the specimen down to 8K, two emission lines with linewidths of 320μeV separated by 660 μeV
are revealed. The two lines can be expected as arising from e-h transitions involving hole px or py

type Bloch states owing to some growth asymmetry, the present QDs acquire a rectangular base
thus breaking the degeneracy of px and py hole states in a QD with square base. At 8K the
thermal energy is comparable to the energy difference between px and py hole state transitions
and thus with fewer phonons both peaks are revealed.
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Fig.5 PL spectra from 12ML InAs QD bounded by {101} planes at 77.4 K and 8.0 K. (a) PL
spectrum collected at 77.4K and excitation power of 675 nW (~21 W/cm2). (b) Power
dependence of PL peak intensity at 77.4K. (c) PL spectrum collected at 8.0 K and excitation
power of 400 nW (~13 W/cm2) (d) Power dependence of PL peak intensity at 8.0 K. For all
cases, the excitation is with cw Ti:S laser tuned to 780 nm.

The PL spectra of the 4.25ML flat In0.5Ga0.5As QD on mesa tops bounded by {103} planes
and with a base length of ~21nm and height of ~3nm as estimated from growth evolution are
shown in Fig.6. The PL emission is near the expected wavelength of 930.5nm with a linewidth of
6.3meV at 77.4K. The PL intensity saturates at a very low power of 3.5μW (~100 W/cm2) on the
mesa which reveals the 3-dimensionally confined nature of the participating electronic energy
states. Unlike the binary InAs QD of the preceding case, the linewidth in this case of an alloy QD
is broadened not only by thermal energy of phonon motion in the QD but also by the alloy
disorder within the QD. Lowering the temperature to 8K, a single primary peak with a linewidth
of 340 μeV is seen as shown in Fig.6(c). The absence of two clear peaks from px and py hole
states in the alloy QD is probably because of the mixing of px and py hole states due to alloy
disorder as well as the diamond like base for {103} plane bounding the QD. The coherence
lifetime of QD, which is commonly taken to be inversely related to the measured PL emission
linewidth, is found to be ~1ps for both kinds of QDs. The linewidth observed at 8K for either the
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binary InAs QDs or alloy In0.5Ga0.5As QDs does not reveal the true linewidth but is measurement
resolution limited. Therefore, the ~1 ps coherence lifetime derived from the integrated PL data is
a lower bound.

Fig.6 PL spectra from 4.25ML In0.5Ga0.5As QD bounded by {103} planes at 77.4K and 8.0
K. (a) PL spectrum collected at 77.4K and excitation power density of 1000 nW (~32 W/cm2).
(b) Power dependence of PL peak intensity at 77.4K. (c)  PL spectrum collected at 8.0 and and
excitation power density of 200 nW (~6.4 W/cm2) (d) Power dependence of PL.

In Fig.7 we show the time-resolved PL dynamics of the 4.25ML flat In0.5Ga0.5As QD with
emission at ~930nm thus making it compatible with our Si APD based detection system. A
radiative decay time of ~1ns is measured. Considering the instrument's own response function,
the deconvoluted radiative decay time is ~0.8ns, consistent with decay time of single SAQD5,17.
Lastly, to assess the uniformity of emission from this class of flat InGaAs/GaAs single QD
located on top of nanomesas in regular arrays, three mesas with 15μm separation between them
for each of the two categories were examined. The 12ML flat InAs QD on mesa tops bounded by
{101} planes in the array show PL emission at 1122.5±1.2nm with a linewidth of 5.6±1meV at
77.4K while the 4.25ML flat In0.5Ga0.5As QD on mesa tops bounded by {103} planes show PL
emission at 930.5±3.8nm with a  linewidth of 6.3±1meV at 77.4K. The uniformity of this new
class of QD is higher than that of SAQDs.
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Fig.7 TRPL data for a 4.25ML In0.5Ga0.5As QD bounded by {103} planes at 8.0 K with detection
wavelength at 927.25nm and 76MHz fs pulsed Ti:S laser tuned to 780nm as excitation source.
The measured TRPL data are plotted as circles with their reconvoluted fitting (red dash line) and
the deconvoluted fitting (blue solid line) obtained by considering the instrument response
function (IRF) shown in the insert. The decay time of the QD PL emission is 0.8ns after
deconvolution.

To summarize, the growth and optical response of flat top InGaAs single QDs located on
the top of GaAs(001) nanomesas in an array was examined. The size and shape of the single QD
on the nanomesa is controlled using the engineered surface-stress gradient directed adatom
interfacet migration during growth. Knowing the geometry of planes present on the as-designed
nanomesas and controlling the inter-facet migration lengths of atoms by controlling the arsenic
pressure, cation flux, and substrate temperature, we control the evolution of nanomesas during
growth and deposit InGaAs at the appropriate stage to form strain released truncated-pyramidal
shape GaAs/InGaAs/GaAs QDs with base lengths of <30nm on mesa tops bounded by {103} or
{101} planes. This class of QDs overcomes the two basic limitations of the much used island
SAQDs: (i) the structural and chemical inhomogeneity and (ii) random positioning. In addition,
optical results reported here on this new class of QDs indicate that their exciton coherence time
is longer than ~1ps and the radiative decay time is ~0.8ns, comparable to SAQDs, but with
higher uniformity than SAQDs. These features taken together make the flat-morphology
quantum box like QDs good candidates for single photon source array applications.

Single Nanotemplate Quantum Dot Photon Emission Statistics
To study and measure single photon emission characteristics of NTQDs, in Fall 2013 we

extended our micro-PL setup to include the capability of measuring the second order time
correlation function (the g(2) function ) for photons emitted by the NTQDs. The emitted light
from the NTQD is collected through the microscope, filtered by spectrometer and goes through a
50/50 beam splitter with two Si APDs on each side to realize the classic Hanbury-Brown and
Twiss setup for g(2) measurement. Picosecond discriminators, delay unit, and time-to-pulse height
converter are used for processing the electronic signal from the APDs to finally display the
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measured correlation function. The timing resolution of the electronics is ~10ps, tested using a
signal with known shape from the function generator and the instrument response function (IRF)
linewidth of the g(2) setup tested using the 76MHz Ti-Sa laser line at 875nm is 1.5ns, mainly
limited by the time jitter of the APDs

Considerable effort was put in to improve the signal-to-noise ratio of our g(2) setup. New
APDs with reasonably low background counts (<200c/s) and large enough effective area
(150μm) were purchased and installed to enhance the signal-to-noise ratio of the detectors.
Adjustment of design of filters and splitters in the microscope was carried out to minimize
possible loss in the microscope. NIR optimized lens pair were tested and used to eliminate
aberration of collected light from NTQD to enhance the collection efficiency of setup. However,
with no funds available for laboratory materials and supplies including cryogenic fluids the work
had to be stopped.
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 (Contributed talk) Jiefei Zhang, Zachary Lingley, Siyuan Lu, and Anupam Madhukar
“Nanotemplate-Directed InGaAs/GaAs Quantum Dots: Towards Single Photon Emitter
Arrays”, North American MBE Conference, Banff, Canada, Oct 5-11, 2013.

Publications:
1. Jiefei Zhang, Zachary Lingley, Siyuan Lu, and Anupam Madhukar “Nanotemplate-Directed
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02C106 (2014)
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